Myeloproliferative Neoplasms: A Case-Based Approach

Adam M. Miller, MD
PGY-4 Resident Physician
Department of Pathology and Laboratory Medicine
Indiana University School of Medicine
American Society for Clinical Laboratory Science Indiana Annual Meeting
March 29th, 2018

Objectives

• Recognize the typical laboratory findings and peripheral blood smear morphology for myeloproliferative neoplasms
• Be familiar with expected bone marrow aspirate and biopsy morphologic findings in myeloproliferative neoplasms
• Understand the role of molecular testing in the diagnosis of myeloproliferative neoplasms

Myeloproliferative Neoplasms

• Clonal proliferation of bone marrow cells resulting in increased production of mature cells
• No significant dysplasia
• Strong association with splenomegaly at presentation

Disclosures

• No conflicts of interests regarding the topic being presented

Myeloproliferative Neoplasms

• Chronic myeloid leukemia, BCR-ABL1-positive
• Chronic neutrophilic leukemia
• Polycythemia vera
• Primary myelofibrosis
• Essential thrombocythemia
• Chronic eosinophilic leukemia, NOS
• Myeloproliferative neoplasm, unclassifiable

Myeloproliferative Neoplasms

• Diagnosis often requires integration of multiple data points
 – Bone marrow morphology
 – Clinical data
 – Laboratory data
• Tendency to progress to eventual bone marrow failure or acute leukemia
Case 1

- 86 year-old woman
- Clinical history of diverticulitis, duodenal ulcers, and gastrointestinal bleeding
- Presented with one week history of abdominal pain and nausea
- Physical exam unremarkable

Case 1

- WBC: 12.5 k/cumm
 - Neutrophils: 64%
 - Lymphocytes: 18%
 - Monocytes: 9%
 - Eosinophils: 6%
 - Basophils: 3%
- Hemoglobin: 19.4 g/dL
 - MCV: 94 fL
 - RDW: 14.4%
- Platelets: 690 k/cumm
- Erythropoietin: 2.2 mIU/mL

Case 1

- Flow cytometry of the peripheral blood and bone marrow:
 - No immunophenotypic evidence of lymphoma or leukemia

Case 1

- Bone marrow aspirate differential:
 - Blasts: 1%
 - Promyelocytes: 5%
 - Myelocytes: 17%
 - Metamyelocytes: 5%
 - Bands: 14%
 - Polys: 25%
 - Lymphocytes: 6%
 - Monocytes: 2%
 - Eosinophils: 2%
 - Nucleated RBCs: 22%
Case 1

- JAK2 V617F mutation detected by both PCR and myeloid NGS
- Final Diagnosis: Polycythemia vera

Polycythemia Vera

- Chronic myeloproliferative neoplasm characterized by increased red blood cell production independent of mechanisms that normally regulate erythropoiesis

Polycythemia Vera

- 0.84 cases per 100,000 people/year
- Median age of diagnosis is 60 years
- Pediatric cases are rare
- Slight male predominance
Polycythemia Vera

- Major Criteria
 - Elevated hemoglobin concentration (> 16.5 g/dL for men, >16.0 g/dL for women)
 - Bone marrow biopsy showing age-adjusted hypercellularity with panmyelosis
 - Presence of JAK2 V617F or JAK2 exon 12 mutation
- Minor Criteria
 - Subnormal serum erythropoietin level

- Two phases clinically
 - Polycythemic phase
 - Increased red blood cell mass
 - Clinically associated with pruritus (post-shower), thrombosis, erythromelalgia
 - Spent phase (post polycythemia vera myelofibrosis)
 - Fibrosis
 - Cytopenias
 - Extramedullary hematopoiesis

- Good prognosis (decades range)
- Possible evolution to myelodysplastic syndrome or leukemia (2-3% of cases)
- Mortality primarily due to bone marrow failure or progression to leukemia
- Treatment consists of therapeutic phlebotomy and cytoreductive agents (primarily hydroxyurea)
 - May utilize JAK2 inhibitors (e.g. ruxolitinib) if inadequate response or intolerance

Adapted from Pharmstudice (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Polycythemia Vera

By Herbert L. Fred, MD and Hendrik A. van Dijk (http://cnx.org/content/m14932/latest/) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons
Case 2

- 59 year-old man
- Clinical history of alcohol abuse, hypertension, and type 2 diabetes
- Presented with one month history of weight loss and night sweats
- Physical exam remarkable for splenomegaly palpable 5 cm below the costal margin

- WBC: 461.4 k/cumm
 - Blasts: 1%
 - Promyelocytes: 6%
 - Myelocytes: 22%
 - Metamyelocytes: 11%
 - Bands: 13%
 - Neutrophils: 37%
 - Lymphocytes: 1%
 - Monocytes: 3%
 - Eosinophils: 4%
 - Basophils: 5%

- Hemoglobin: 10.6 g/dL
 - MCV: 79 fl.
 - RDW: 19.2%
 - Platelets: 498 k/cumm

- Flow cytometry of the peripheral blood:
 - No immunophenotypic evidence of lymphoma or leukemia

- Bone marrow biopsy touch preparations differential:
 - Blasts: 5%
 - Promyelocytes: 3%
 - Myelocytes: 24%
 - Metamyelocytes: 12%
 - Bands: 20%
 - Polys: 26%
 - Lymphocytes: 1%
 - Eosinophils: 5%
 - Basophils: 2%
 - Nucleated RBCs: 2%
Case 2

- Peripheral blood and bone marrow cytogenetics:
 - 46,XY,t(9;22)(q34;q11.2)
- Peripheral Blood FISH:
 - Positive for BCR-ABL1 Fusion
- Peripheral Blood BCR-ABL1 PCR:
 - p210 transcripts: 82.092%
 - p190 transcripts: 0.076%
- Final Diagnosis: Chronic myeloid leukemia

Chronic Myeloid Leukemia

- Myeloproliferative neoplasm secondary to a BCR-ABL1 fusion gene in a hematopoietic stem cell in which granulocytes are the major proliferative component

- Most common myeloproliferative neoplasm
- 1.5 cases per 100,000 people/year
- Represents 15-20% of all leukemia diagnoses
- Median age of diagnosis is 67 years and correlates strongly with age
- Pediatric cases are rare
- Slight male predominance

- No WHO defined criteria for diagnosis
- Detection of BCR-ABL1 fusion gene in the appropriate clinical and laboratory settings

- p210 – Most commonly detected in CML and occasionally in ALL or AML
- p190 – Common in B-cell ALL and occasionally in AML but rarely in CML (typically with monocytosis)
- p230 – CML with neutrophilic maturation or conspicuous thrombocytosis
Chronic Myeloid Leukemia

BCR-ABL1 Fusion Protein

Constitutive Tyrosine Kinase Activity

Activation of Intracellular Signaling Pathways

Transcription of Genes Related to Proliferation and Survival

Chronic Myeloid Leukemia

- Triphasic disease
 - Chronic phase (>90% of patients)
 - Accelerated phase
 - Blast phase

Chronic Myeloid Leukemia

- Chronic phase, clinical and laboratory findings
 - 50% discovered when asymptomatic
 - Fatigue, malaise, weight loss, night sweats, splenomegaly
 - Patients typically present with marked leukocytosis:
 - Increased myeloid cells at all stages of maturation
 - Basophilia and eosinophilia
 - Absolute monocytosis
 - Thrombocytosis
 - Splenomegaly

Chronic Myeloid Leukemia

- Chronic phase, bone marrow
 - Hypercellular with marked granulocytic proliferation similar to the peripheral blood
 - Markedly increased myeloid to erythroid ratio
 - Normal to increased megakaryocytes with “dwarf” morphology
 - Histiocytes
 - Reticulin fibrosis in 30-40% of cases

Chronic Myeloid Leukemia

- Accelerated phase
 - 10-19% blasts in the peripheral blood or bone marrow
 - Persistent thrombocytopenia
 - ≥20% basophils in the peripheral blood
 - Additional chromosomal abnormalities
 - Persistent or increasing WBC count, unresponsive to therapy
 - Persistent or increasing splenomegaly, unresponsive to therapy
 - Persistent thrombocytosis, unresponsive to therapy

Chronic Myeloid Leukemia

- Blast phase
 - ≥20% blasts in the blood or bone marrow
 - Extramedullary proliferation of blasts
Chronic Myeloid Leukemia

- 10 year survival rate of 80-90% with current therapy
- Without therapy, progress to acute leukemia in 3 to 5 years
- Mortality related to progression to acute leukemia
- Presentation in blast phase is a poor prognostic marker
- Tyrosine kinase inhibitors are the mainstay of treatment

Case 3

- 50 year-old man
- Clinical history of chronic portal venous thrombosis following abdominal surgery
- Presented with upper abdominal pain
- Physical exam remarkable for massive splenomegaly

Case 3

- WBC: 23.4 k/cumm
 - Myelocytes: 2%
 - Bands: 1%
 - Neutrophils: 78%
 - Lymphocytes: 4%
 - Monocytes: 2%
 - Eosinophils: 10%
 - Basophils: 1%

- Hemoglobin: 11.6 g/dL
- MCV: 69 fL
- RDW: 25.3%
- Platelets: 286 k/cumm

Case 3

- Flow cytometry of the peripheral blood and bone marrow:
 - No immunophenotypic evidence of lymphoma or leukemia
Case 3

- Bone marrow aspirate differential:
 - Blasts: 3%
 - Promyelocytes: 7%
 - Myelocytes: 11%
 - Metamyelocytes: 13%
 - Bands: 12%
 - Polys: 18%
 - Lymphocytes: 3%
 - Eosinophils: 7%
 - Nucleated RBCs: 25%
Case 3

- JAK2 V617F mutation detected by myeloid NGS
- Final diagnosis: Primary myelofibrosis

Primary Myelofibrosis

- Clonal myeloproliferative neoplasm characterized by a proliferation of predominantly abnormal megakaryocytes and granulocytes associated with bone marrow fibrosis and extramedullary hematopoiesis

- 0.47 cases per 100,000 people/year
- Median age of diagnosis is 65 years
- Rare in pediatric population
- No sex predilection

Primary Myelofibrosis

- Two stages
 - Prefibrotic/early (30-50%)
 - Often asymptomatic (30%)
 - Palpable splenomegaly
 - Anemia, leukocytosis, or thrombocytosis
 - Overt fibrotic
 - Fatigue, dyspnea, weight loss, night sweats, fever, cachexia
 - Palpable splenomegaly
 - Anemia, leukoerythroblastosis, thrombocytopenia
 - Increased LDH

Primary Myelofibrosis

- Prefibrotic/early stage
 - Major criteria
 - Megakaryocytic proliferation and atypia, without significant reticulin fibrosis (grade 0–1), accompanied by bone marrow hypercellularity, granulocytic proliferation, and decreased erythropoiesis.
 - Criteria for BCR-ABL1-positive chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, myelodysplastic syndrome, and other myeloid neoplasms are not met
 - Evidence of clonality
 - JAK2 (50-60%), CALR (24%), or MPL (8%) mutation
 - Other clonal markers
 - Absence of reactive conditions
 - Minor criteria
 - Anemia
 - Leukocytosis
 - Splenomegaly
 - Increased LDH
Primary Myelofibrosis

- Overt fibrotic stage
 - Major criteria
 - Megakaryocytic hyperplasia and atypia with significant reticulin and/or collagen fibrosis (grade 2–3)
 - Criteria for BCR-ABL1-positive chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, myelodysplastic syndromes, and other myeloid neoplasms are not met
 - Evidence of clonality
 - JAK2 (50–60%), CALR (24%), or MPL (8%) mutations
 - Other clonal markers
 - Absence of reactive conditions
 - Minor criteria
 - Anemia
 - Leukocytosis
 - Splenomegaly
 - Increased LDH
 - Leukocytosis
 - Associated with accelerated phase (10–19% blasts) and blast transformation (≥20%)
 - Progression to blast phase seen in 5–30% of patients

Adapted from Pharmstudica (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

By Ed Uthman from Houston, TX, USA (Myelofibrosis, Reticulin Stain) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

By Osaretin (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons
Primary Myelofibrosis

- Highly variable prognosis from months to years
 - Dependent on stage at time of presentation
 - 72% 10 year survival for those presenting in the prefibrotic stage
 - 3-7 years for patients presenting in overt fibrotic stage
- Mortality related to bone marrow failure or progression to acute leukemia
- Treatment with JAK2 inhibitors (e.g. ruxolitinib) or allogeneic hematopoietic stem cell transplant

Case 4

- 81 year-old man
- Clinical history of hypertension and renal insufficiency
- Bilateral knee replacement one year prior with associated anemia, now corrected
- Routine testing incidentally revealed increased platelet count
- Physical exam unremarkable

Case 4

- WBC: 9.7 k/cumm
 - Neutrophils: 74%
 - Lymphocytes: 16%
 - Monocytes: 8%
 - Eosinophils: 1%
 - Basophils: 1%
- Hemoglobin: 16.5 g/dL
 - MCV: 95 fl
 - RDW: 13.9%
- Platelets: 587 k/cumm

Case 4

- Flow cytometry of the bone marrow:
 - No immunophenotypic evidence of lymphoma or leukemia

Case 4

- Bone marrow aspirate differential:
 - Blasts: 1%
 - Promyelocytes: 4%
 - Myelocytes: 15%
 - Metamyelocytes: 2%
 - Bands: 13%
 - Polys: 20%
 - Lymphocytes: 12%
 - Eosinophils: 2%
 - Nucleated RBCs: 25%
Case 4

- JAK2 V617F mutation detected by both PCR and myeloid NGS
- Final diagnosis: Essential thrombocythemia

Essential Thrombocythemia

- Chronic myeloproliferative neoplasm primarily involving the megakaryocytic lineage characterized by sustained thrombocytosis and increased numbers of large, mature megakaryocytes in the bone marrow
Essential Thrombocytemia

- 1.03 cases per 100,000 people/year
- Most cases diagnosed in patients 50-60 years of age
 - Smaller incidence around 30 years of age
- Slight female predilection

Essential Thrombocytemia

- Major criteria
 - Thrombocytosis
 - Bone marrow with increased numbers of mature megakaryocytes with hyperlobulated nuclei and no significant fibrosis or increased in granulopoiesis or erythropoiesis
 - Criteria for BCR-ABL1-positive chronic myeloid leukemia, polycythemia vera, primary myelofibrosis, and other myeloid neoplasms are not met
 - JAK2 (50-60%), CALR (30%), or MPL (3%) mutation
- Minor criteria
 - Presence of a clonal marker
 - Absence of evidence for reactive thrombocytosis

Essential Thrombocytemia

- >50% of cases are discovered incidentally
- Remaining cases usually present with a manifestation of vascular occlusion or hemorrhage
 - Microvascular occlusion
 - Transient ischemic attacks, digital ischemia, paraesthesias, or gangrene
 - Thrombosis of major vasculature
 - Budd-Chiari syndrome
 - Hemorrhage typically in mucosal sites
- Splenomegaly in only 15-20% of cases

Essential Thrombocytemia

- Indolent disorder characterized by long symptom-free intervals interrupted by life-threatening thromboembolic or hemorrhagic events
- Median survival of 10-15 years
- 10% progress to post-essential thrombocytemia myelofibrosis
- <5% progress to acute myeloid leukemia or myelodysplastic syndrome
- Treatment consists of aspirin or cytoreductive agents (primarily hydroxyurea)

Summary

- Myeloproliferative neoplasms have significant overlap
 - Clinical
 - Laboratory
 - Morphology
- Integration of all available data are necessary to arrive at the appropriate diagnosis

References

All images used within the presentation are either my own work, part of the public domain, or are permitted for free use, distribution, and modification through a Creative Commons license. Images obtained via the public domain or a Creative Commons license are cited as such on each individual slide.